

In AP Calculus AB, students learn to understand change geometrically and visually (by studying graphs of curves), analytically (by studying and working with mathematical formulas), numerically (by seeing patterns in sets of numbers), and verbally. Instead of simply getting the right answer, students learn to evaluate the soundness of proposed solutions and to apply mathematical reasoning to real-world models. Calculus helps scientists, engineers, and financial analysts understand the complex relationships behind real-world phenomena. The equivalent of an introductory college-level calculus course, AP Calculus AB prepares students for the AP exam and further studies in science, engineering, and mathematics.

This course has been authorized by the College Board® to use the AP designation.

*Advanced Placement® and AP® are registered trademarks and/or owned by the College Board, which was not involved in the production of, and does not endorse this product.

Length: Two semesters

UNIT 1: PRECALCULUS REVIEW

UNIT 2: BRIDGE TO CALCULUS

LESSON 1: INTRO TO CALCULUS

Study: What Is Calculus?

Explore calculus as the mathematical study of change, which can help us understand and model change in our world. See some specific examples of uses for calculus.

Duration: 0 hrs 30 mins

Practice: What Is Calculus?

Explore calculus as the mathematical study of change, which can help us understand and model change in our world. See some specific examples of uses for calculus.

Duration: 0 hrs 30 mins Scoring: 0 points

Discuss: Introductions

Before exploring the details of calculus, discuss its definition with your classmates.

Duration: 0 hrs 30 mins Scoring: 10 points

LESSON 2: FUNCTIONS

Study: Functions

Explore the concepts of domain, range, zeros (roots) of a function, and asymptotes, including the idea that a function gives a unique value for a given domain value.

Duration: 0 hrs 30 mins

Practice: Functions

Explore the concepts of domain, range, zeros (roots) of a function, and asymptotes, including the idea that a function gives a unique value for a given domain value.

Duration: 0 hrs 30 mins

Quiz: Asymptotes and Domain Restrictions

Practice finding asymptotes and domain restrictions.

Duration: 0 hrs 45 mins Scoring: 12 points

Practice: How to Use Your Graphing Calculator

Use your graphing calculator to graph a function to an arbitrary viewing window.

Duration: 1 hr

Practice: Finding Zeroes with Your Graphing Calculator

Use your graphing calculator to find the zeroes of a function.

Duration: 0 hrs 45 mins

Practice: Graphing Functions and Finding Roots

Graph various functions and find roots for those functions.

Duration: 1 hr

Study: Functions From Functions 1

Learn about adding, subtracting, multiplying, and dividing functions to create new functions. Notice what happens to their domains

Duration: 0 hrs 30 mins

Practice: Functions From Functions 1

Learn about adding, subtracting, multiplying, and dividing functions to create new functions. Notice what happens to their domains.

Duration: 0 hrs 30 mins

Practice: Exploring Functions With Your Graphing Calculator

Use your graphing calculator to explore combinations of functions.

Duration: 0 hrs 45 mins

Study: Functions From Functions 2

Explore functions created from composites and inverses of other functions. Notice what happens to their domains.

Practice: Functions From Functions 2

Explore functions created from composites and inverses of other functions. Notice what happens to their domains.

Duration: 0 hrs 30 mins

Quiz: Finding Function Combinations

Practice finding functions that are combinations of other functions.

Duration: 1 hr Scoring: 10 points

Practice: Concepts in Functions

Answer questions and solve problems that relate the concepts covered in the study of functions.

Duration: 1 hr

LESSON 3: GRAPHICAL SYMMETRY

Study: Symmetry

Explore what symmetry is present in the cases of odd, even, and inverse functions. Look at ways to identify the various symmetry cases graphically and algebraically.

Duration: 0 hrs 30 mins

Practice: Symmetry

Explore what symmetry is present in the cases of odd, even, and inverse functions. Look at ways to identify the various symmetry cases graphically and algebraically.

Duration: 0 hrs 30 mins

Quiz: Symmetry of Equations

After determining the type of symmetry for various equations that may be given graphically, algebraically, or as a table of values, answer questions about symmetry.

Duration: 1 hr Scoring: 11 points

Practice: Writing Symmetrical Functions

Practice with functions by writing functions for situations and situations for functions.

Duration: 1 hr Scoring: 25 points

LESSON 4: PATTERNS IN GRAPHS: PARAMETERS

Study: Families of Functions and Their Graphs

Explore how to use information about one graph to quickly draw the graphs of other, related functions.

Duration: 0 hrs 30 mins

Practice: Families of Functions and Their Graphs

Explore how to use information about one graph to quickly draw the graphs of other, related functions.

Duration: 0 hrs 30 mins

Practice: Exploring Shifting and Distorting Graphs

Use your graphing calculator to explore shifting and distorting graphs.

Duration: 0 hrs 45 mins

Practice: Pattern Recognition

Work on pattern recognition for the various forms, and sharpen your skills with parameters and how they relate to families of functions.

Duration: 1 hr

LESSON 5: BRIDGE TO CALCULUS WRAP-UP

Review: Bridge to Calculus

Review your studies of functions, graphical symmetry, and patterns in graphs.

Duration: 5 hrs

Test (CS): Bridge to Calculus

Take a 25-minute test, modeled after the AP Exam, covering the concepts of functions, graphical symmetry, and patterns in graphs.

Duration: 0 hrs 25 mins Scoring: 20 points

Test (TS): Bridge to Calculus

Take a 35-minute test, modeled after the AP Exam, covering the concepts of functions, graphical symmetry, and patterns in graphs.

Duration: 0 hrs 35 mins Scoring: 30 points

UNIT 3: LIMITS AND CONTINUITY

LESSON 1: LIMITS AND CONTINUITY

Discuss: Coming to Terms With Infinity

Discuss Zeno's paradox of Achilles and the tortoise (and maybe some other paradoxes) in preparation for studying the infinite

Duration: 0 hrs 30 mins Scoring: 10 points

Study: Limits of Functions

Explore how to estimate limits from graphs or tables of data.

Duration: 0 hrs 30 mins

Practice: Limits of Functions

Explore how to estimate limits from graphs or tables of data.

Duration: 0 hrs 30 mins

Quiz: Limits Practice

Answer questions about whether (and where!) limits exist.

Duration: 1 hr Scoring: 9 points

Study: Determining Limits Analytically

Examine the basic properties of limits and how to calculate limits using algebra; explore the limits of functions that include trig functions.

Duration: 0 hrs 30 mins

Practice: Determining Limits Analytically

Examine the basic properties of limits and how to calculate limits using algebra; explore the limits of functions that

include trig functions.

Duration: 0 hrs 30 mins

Practice: Limits in Trigonometric Functions

Practice determining limits, including limits of trigonometric functions.

Duration: 0 hrs 45 mins

LESSON 2: ASYMPTOTIC AND UNBOUNDED BEHAVIOR

Study: Asymptotes as Limits

Examine asymptotes in terms of graphical behavior, and asymptotic behavior in terms of limits involving infinity.

Duration: 0 hrs 30 mins

Practice: Asymptotes as Limits

Examine asymptotes in terms of graphical behavior, and asymptotic behavior in terms of limits involving infinity.

Duration: 0 hrs 30 mins

Practice: Determining Graphs When Given Limits

Apply given information about limits, when determining graphs

Duration: 1 hr Scoring: 25 points

Study: Comparing Relative Magnitudes of Functions

See how relative magnitudes of functions can help you determine limits quickly.

Duration: 0 hrs 30 mins

Practice: Comparing Relative Magnitudes of Functions

See how relative magnitudes of functions can help you determine limits quickly.

Duration: 0 hrs 30 mins

Quiz: Limits

Practice calculating limits as x goes to infinity.

Duration: 1 hr Scoring: 13 points

Study: Limits That Do Not Exist

Learn about some nonexistent limits and the reasons for their nonexistence.

Duration: 0 hrs 30 mins

Practice: Limits That Do Not Exist

Learn about some nonexistent limits and the reasons for their nonexistence.

Duration: 0 hrs 30 mins

Discuss: Nonexistent Limits in Nature

Consider nonexistent limits in nature using a predator/prey model.

Duration: 1 hr Scoring: 10 points

Practice: Overview of Limits

Apply your knowledge of limits as you determine limits that require algebraic manipulation.

Duration: 1 hr

LESSON 3: CONTINUOUS FUNCTIONS

Study: Continuity

Explore the central idea of continuity (close values of the domain lead to close values of the range) and understand continuity in terms of limits.

Duration: 0 hrs 30 mins

Practice: Continuity

Explore the central idea of continuity (close values of the domain lead to close values of the range) and understand continuity in terms of limits.

Duration: 0 hrs 30 mins

Quiz: Domains of Continuity

Practice determining domains of continuity for functions, given either the graph or the algebraic expression (including asymptotes).

Duration: 0 hrs 30 mins Scoring: 11 points

Practice: Continuity Problems

As you examine functions for discontinuities and examine their types, recognize the properties of functions that are important in describing functions.

Duration: 1 hr 15 mins Scoring: 25 points

Study: The Intermediate Value Theorem and the Extreme Value Theorem

Explore the existence of absolute extrema of a continuous function on a closed interval [a,b] and the possible nonexistence on an open interval (a,b) look at geometric understanding of graphs of continuous functions.

Practice: The Intermediate Value Theorem and the Extreme Value Theorem

Explore the existence of absolute extrema of a continuous function on a closed interval [a,b] and the possible nonexistence on an open interval (a,b) look at geometric understanding of graphs of continuous functions.

Duration: 0 hrs 30 mins

Discuss: Unbounded Behavior and Continuity

Brainstorm solutions to problems that show the relationship between unbounded behavior and continuity. Respond to your classmates ideas.

Duration: 1 hr Scoring: 10 points

LESSON 4: LIMITS AND CONTINUITY WRAP-UP

Review: Limits and Continuity

Review your studies of limits and continuity.

Duration: 5 hrs

Test (CS): Limits and Continuity

Take a 25-minute test, modeled after the AP Exam, covering the concepts of limits and asymptotes and continuity. Duration: 0 hrs 25 mins Scoring: 20 points

Test (TS): Limits and Continuity

Take a 35-minute test, modeled after the AP Exam, covering the concepts of limits and asymptotes and continuity. Duration: 0 hrs 35 mins Scoring: 30 points

UNIT 4: DERIVATIVES

LESSON 1: DERIVATIVES AT A POINT

Study: Rates of Change as Slopes and Limits

Examine approximate rate of change from graphs and tables of values, the tangent line to a curve at a point, and local linear approximation.

Duration: 0 hrs 30 mins

Practice: Rates of Change as Slopes and Limits

Examine approximate rate of change from graphs and tables of values, the tangent line to a curve at a point, and local linear approximation.

Duration: 0 hrs 30 mins

Quiz: Slope Estimates

Answer questions by estimating slope from graphs and tables of data. Find instantaneous rates of change by estimations.

Duration: 1 hr Scoring: 7 points

Study: The Derivative at a Point

Examine the derivative defined as the limit of the difference quotient. See examples, including points at which there are vertical tangents and points at which there are no tangents.

Practice: The Derivative at a Point

Examine the derivative defined as the limit of the difference quotient. See examples, including points at which there are vertical tangents and points at which there are no tangents.

Duration: 0 hrs 30 mins

Practice: Practice Finding Slopes

Practice finding slopes using easy examples of limits, some using real-world examples.

Duration: 1 hr

Practice: Use of nDeriv or d (differentiate)

Use nDeriv or d (differentiate) on your calculator to compute the derivative at a point.

Duration: 1 hr

Quiz: nDeriv Examples

On real-world examples, use nDeriv on points to find slopes.

Duration: 1 hr Scoring: 9 points

Study: The Derivative as a Function

Explore the use of the derivative as a function to find the original function's slope at any x value.

Duration: 0 hrs 30 mins

Practice: The Derivative as a Function

Explore the use of the derivative as a function to find the original function's slope at any x value.

Duration: 0 hrs 30 mins

Practice: Comparing Calculator Derivatives to Real Ones

Use the limit definition to find a function, then compare that to y2 = nDeriv(y1,x,x) (graphical analysis). Graph a function that you found using the limit and compare that to the calculator derivative graph y2 = nDeriv(y1,x,x)

Duration: 0 hrs 45 mins Scoring: 20 points

LESSON 2: COMPUTING DERIVATIVES

Discuss: Shortcut Rules

Create a shortcut to the derivative, and make suggestions to your classmates.

Duration: 1 hr Scoring: 10 points

Study: Computing Derivatives

See basic shortcuts for finding derivatives of power functions and of sine and cosine functions.

Duration: 0 hrs 30 mins

Practice: Computing Derivatives

See basic shortcuts for finding derivatives of power functions and of sine and cosine functions.

Duration: 0 hrs 30 mins

Practice: Practice on Derivatives

Practice the power rule and simple trig derivatives. Find slopes and simple applications. Come up with the original function and answer some questions based on the derivative.

Duration: 1 hr

Study: Derivatives of Sums, Products, and Quotients of Functions

See how to take derivatives of functions defined as a combination of other functions. The rule for doing this will help determine derivatives for all sorts of functions.

Duration: 0 hrs 30 mins

Practice: Derivatives of Sums, Products, and Quotients of Functions

See how to take derivatives of functions defined as a combination of other functions. The rule for doing this will help determine derivatives for all sorts of functions.

Duration: 0 hrs 30 mins

Quiz: Product and Quotient Rule Practice

Answer questions using the product and quotient rules.

Duration: 1 hr Scoring: 10 points

Practice: Determining Slope

Use the rules for finding derivatives to answer questions about curves.

Duration: 1 hr Scoring: 20 points

LESSON 3: DERIVATIVE AS A FUNCTION

Discuss: Graphs of Derivatives

Explore derivatives and their graphs.

Duration: 0 hrs 30 mins Scoring: 10 points

Study: Relating the Graph of a Function and Its Derivative

Examine the corresponding characteristics of graphs of f and f". and the relationship between the increasing and decreasing behavior of f and the sign of f".

Duration: 0 hrs 30 mins

Practice: Relating the Graph of a Function and Its Derivative

Examine the corresponding characteristics of graphs of f and f". and the relationship between the increasing and decreasing behavior of f and the sign of f".

Duration: 0 hrs 30 mins

Practice: Derivatives and Graphs

Practice recognizing derivatives by looking at graphs.

Duration: 0 hrs 45 mins

Study: The Relationship Between Continuity and Differentiability

Explore the relationship between differentiability and continuity.

Duration: 0 hrs 30 mins

Practice: The Relationship Between Continuity and Differentiability

Explore the relationship between differentiability and continuity.

Duration: 0 hrs 30 mins

Practice: More Exploration

Answer questions while exploring the relationship between differentiability and continuity.

Duration: 1 hr Scoring: 25 points

Study: Theorems: Rolle and Mean Value

Explore Rolle's Theorem and the Mean Value Theorem and their geometric consequences.

Duration: 0 hrs 30 mins

Practice: Theorems: Rolle and Mean Value

Explore Rolle's Theorem and the Mean Value Theorem and their geometric consequences.

Duration: 0 hrs 30 mins

Practice: Mean Value Theorem

Answer free-response questions by finding x values that satisfy the Mean Value Theorem and looking at situations that call for the Mean Value Theorem.

Duration: 1 hr 30 mins

LESSON 4: HIGHER-ORDER DERIVATIVES

Practice: Higher-Order Derivatives

Explore patterns in sin/cos/-sin/-cos/sin. Look for patterns in higher-order derivatives; learn notation for showing the second, third, etc. derivatives.

Duration: 1 hr

Quiz: Multiple Derivatives of Functions

Practice finding some multiple derivatives of functions.

Duration: 1 hr Scoring: 10 points

Study: The Second Derivative and Concavity

Explore the steps to find and use concavity. Examine the relationship between the concavity of f and the sign of f", and points of inflection as places where concavity changes.

Duration: 0 hrs 30 mins

Practice: The Second Derivative and Concavity

Explore the steps to find and use concavity. Examine the relationship between the concavity of f and the sign of f", and points of inflection as places where concavity changes.

Duration: 0 hrs 30 mins

Practice: Concavity

Practice finding and using concavity. This activity is mostly graphical and numerical, with only a few analytical cases.

Duration: 1 hr Scoring: 25 points

Practice: Identifying Functions and Their Derivatives

Practice associating the features of a graph (a maximum or minimum point, an inflection point, an asymptote, uphill and downhill parts) with features on the graph of the derivative and the second derivative.

Duration: 0 hrs 45 mins

LESSON 5: CHAIN RULE AND IMPLICIT DIFFERENTIATION

Study: The Chain Rule

See when and how to use the Chain Rule to find derivatives of composite functions.

Duration: 0 hrs 30 mins

Practice: The Chain Rule

See when and how to use the Chain Rule to find derivatives of composite functions.

Duration: 0 hrs 30 mins

Practice: Chain Rule Practice

Practice with the Chain Rule in a couple of applications to see the relationship to units.

Duration: 1 hr 30 mins

Practice: Finding the Slope of a Curve

Using algebra, find the slope of a curve at several places.

Duration: 1 hr Scoring: 20 points

Study: Implicit Differentiation

Explore how to use a powerful tool, implicit differentiation, to find the slope of a curve that isn't a function.

Duration: 0 hrs 30 mins

Practice: Implicit Differentiation

Explore how to use a powerful tool, implicit differentiation, to find the slope of a curve that isn't a function.

Duration: 0 hrs 30 mins

Practice: Conic Sections

Answer questions using implicit differentiation. Practice using conic sections and new types of curves.

Duration: 1 hr 15 mins

LESSON 6: DERIVATIVES WRAP-UP

Review: Derivatives

Review your studies of derivatives, concavity, the Chain Rule, and implicit differentiation.

Duration: 5 hrs

Test (CS): Derivatives

Take a 25-minute test, modeled after the AP Exam, covering the concepts of derivatives, concavity, the Chain Rule, and implicit differentiation.

Test (TS): Derivatives

Take a 35-minute test, modeled after the AP Exam, covering the concepts of derivatives, concavity, the Chain Rule, and implicit differentiation.

Duration: 0 hrs 35 mins Scoring: 30 points

UNIT 5: RATES OF CHANGE

LESSON 1: EXTREMA AND OPTIMIZATION

Practice: Maximums

Complete an experiment and come up with an answer for the question, "When can a continuous function have a maximum?"

Duration: 1 hr

Study: Extrema and Number Line Tests

Explore absolute (global) and relative (local) extrema, critical points, and the first derivative test.

Duration: 0 hrs 30 mins

Practice: Extrema and Number Line Tests

Explore absolute (global) and relative (local) extrema, critical points, and the first derivative test.

Duration: 0 hrs 30 mins

Quiz: Finding Extrema

Practice curve analysis using a combination of the first and second derivative tests.

Duration: 0 hrs 45 mins Scoring: 8 points

Practice: Work on Extrema

Work on extrema, answering free-response style questions similar to the kind posed on the AP Exam.

Duration: 1 hr

Discuss: Salsa Jars

Discuss your answer to a question about the best number of salsa jars to produce per run by minimizing storage and production costs.

Duration: 1 hr Scoring: 10 points

Study: Optimization

See how to identify variables in optimization situations, write functions representing specific situations, and solve various types of optimization problems.

Duration: 0 hrs 30 mins

Practice: Optimization

See how to identify variables in optimization situations, write functions representing specific situations, and solve various types of optimization problems.

Duration: 0 hrs 30 mins

Practice: Applied Optimizing

Answer questions about applied optimization problems.

Duration: 2 hrs Scoring: 30 points

LESSON 2: TANGENT AND NORMAL LINES

Study: Tangent and Normal Lines

See how to find and use tangent and normal lines.

Duration: 0 hrs 30 mins

Practice: Tangent and Normal Lines

See how to find and use tangent and normal lines.

Duration: 0 hrs 30 mins

Quiz: Finding Tangent and Normal Lines

Practice finding tangent and normal lines using calculus to find the slopes.

Duration: 0 hrs 45 mins Scoring: 4 points

Practice: More Practice

Practice finding tangent and normal lines in slightly more difficult applications.

Duration: 1 hr

Discuss: Approximation

Explain why theta is a good approximation for sin theta if theta is near zero. Discuss your explanation with your class mates.

Duration: 1 hr Scoring: 10 points

Study: Local Linearity and Tangent Line Approximation

Examine local linearity and tangent line approximation.

Duration: 0 hrs 30 mins

Practice: Local Linearity and Tangent Line Approximation

Examine local linearity and tangent line approximation.

Duration: 0 hrs 30 mins

Practice: Tangent Line Approximation

Answer questions by using the tangent line approximation.

Duration: 1 hr 30 mins Scoring: 30 points

LESSON 3: RATES OF CHANGE

Study: Rates of Change as Derivatives

See how to recognize derivatives in real world situations. Explore translating verbal descriptions into math and vice versa.

Duration: 0 hrs 30 mins

Practice: Rates of Change as Derivatives

See how to recognize derivatives in real world situations. Explore translating verbal descriptions into math and vice versa.

Duration: 0 hrs 30 mins

Practice: Finding Rates of Changes

Practice recognizing rates, as ways to start breaking down related-rates problems.

Duration: 1 hr

Discuss: Derivatives in the Real World

Research real-world mentions of a derivatives. Discuss your findings with your classmates.

Duration: 1 hr Scoring: 10 points

LESSON 4: RELATED RATES

Study: Related Rates

Explore modeling related rates of change, such as how the change in the volume of water in a tank is related to the change in the depth of water in the tank.

Duration: 0 hrs 30 mins

Practice: Related Rates

Explore modeling related rates of change, such as how the change in the volume of water in a tank is related to the change in the depth of water in the tank.

Duration: 0 hrs 30 mins

Quiz: Practice Determining Rates

Practice determining rates of change for related variables.

Duration: 1 hr Scoring: 4 points

Practice: Related-Rates Problems

Solve complicated related-rates problems similar to those found on the AP Exam.

Duration: 1 hr 30 mins Scoring: 30 points

LESSON 5: RECTILINEAR MOTION

Practice: Velocity and Acceleration

Answer questions about velocity by first plotting position over time for a 20-minute car ride.

Duration: 1 hr

Study: Rectilinear Motion

Explore interpretation of the derivative as a rate of change in motion problem. Examine velocity, speed, and acceleration.

Duration: 0 hrs 30 mins

Practice: Rectilinear Motion

Explore interpretation of the derivative as a rate of change in motion problem. Examine velocity, speed, and acceleration. Duration: 0 hrs 30 mins

Quiz: Rectilinear Motion Problems

Solve rectilinear motion problems, similar to the AP Exam guestions.

Duration: 0 hrs 45 mins Scoring: 6 points

Practice: More Rectilinear Motion Problems

Solve rectilinear motion problems, similar to the AP Exam free-response questions.

Duration: 1 hr

LESSON 6: SEMESTER WRAP-UP

Practice: Applications of the Derivative

Answer free-response questions that tie together the concepts of basic calculus, limits and continuity, derivatives, and rates of change.

Duration: 2 hrs Scoring: 40 points

Review: Semester 1 Review

Review the concepts of basic calculus, limits and continuity, derivatives, and rates of change in preparation for the Semester Final.

Duration: 7 hrs

Exam: Semester Final

Take a 50-minute Semester Final, modeled after the AP Exam, covering the concepts of basic calculus, limits and continuity, derivatives, and rates of change.

Duration: 0 hrs 50 mins Scoring: 80 points

Final Exam: Semester Final

Take a 70-minute Semester Final, modeled after the AP Exam, covering the concepts of basic calculus, limits and continuity, derivatives, and rates of change.

Duration: 1 hr 10 mins Scoring: 120 points

UNIT 6: THE INTEGRAL AND THE FUNDAMENTAL THEOREM OF CALCULUS

LESSON 1: AREA UNDER A CURVE

Discuss: Derivatives

Write about the derivative, and summarize and discuss what you've learned about derivatives.

Duration: 0 hrs 30 mins Scoring: 10 points

Practice: Analyzing Velocity and Distance in a Car Ride

In this activity take a ride, record information, and then use your data to make discoveries about how math can be used to explore velocity and distance.

Duration: 1 hr

Study: Area Under a Curve: Riemann Sums

Explore how to use rectangles to estimate the area under a curve.

Practice: Area Under a Curve: Riemann Sums

Explore how to use rectangles to estimate the area under a curve.

Duration: 0 hrs 30 mins

Quiz: Practice Using Riemann Sums

Practice estimating areas under curves by computing various Riemann sums using left-hand endpoints, right-hand endpoints, and midpoints.

Duration: 1 hr Scoring: 6 points

Practice: Finding a Better Approximation of Area Under a Curve

Explore how to find a better approximation of area under a curve.

Duration: 0 hrs 45 mins Scoring: 20 points

Study: Numerical Approximations to Area

Examine an alternative to Riemann sums.

Duration: 0 hrs 30 mins

Practice: Numerical Approximations to Area

Examine an alternative to Riemann sums.

Duration: 0 hrs 30 mins

Quiz: An Alternative to Riemann Sums

Apply the trapezoid rule and see that in some cases the approximation is very good, and in other cases it contains a lot of error.

Duration: 1 hr Scoring: 7 points

Practice: Using Approximations to Area Under a Curve

Practice using approximations to area under a curve.

Duration: 1 hr

LESSON 2: DEFINITE INTEGRALS

Practice: What If You Take More Intervals?

Discover what happens if you take more intervals.

Duration: 1 hr

Study: The Definite Integral

Look at how to determine the exact area under the curve. Evaluate some definite integrals by applying simple rules of geometry, and approximate some definite integrals numerically.

Duration: 0 hrs 30 mins

Practice: The Definite Integral

Look at how to determine the exact area under the curve. Evaluate some definite integrals by applying simple rules of geometry, and approximate some definite integrals numerically.

Duration: 0 hrs 30 mins

Quiz: Practice With the Definite Integral

Practice with the definition of the definite integral and its relationship to area under curves.

Duration: 0 hrs 45 mins Scoring: 7 points

Study: Properties of the Definite Integral

Definite integrals work like the areas in precalculus; they have similar algebraic properties when you combine them. This Tutorial examines the important properties of the definite integral.

Duration: 0 hrs 30 mins

Practice: Properties of the Definite Integral

Definite integrals work like the areas in precalculus; they have similar algebraic properties when you combine them. This Tutorial examines the important properties of the definite integral.

Quiz: Practice With Properties of the Definite Integral

Practice combining and working with properties of definite integrals. Use the notion of definite integral as "signed area." Duration: 0 hrs 45 mins Scoring: 9 points

Practice: Finding the Value of a Definite Integral

Approximate definite integrals numerically.

Duration: 1 hr

Quiz: Practice Using fnInt()or nInt()

Use your graphing calculator to approximate definite integrals.

Duration: 0 hrs 30 mins Scoring: 5 points

Study: The Definite Integral as Accumulated Change

The definite integral is more than just the area under the curve. In this Tutorial you'll look at the definite integral as an "accumulator."

Duration: 0 hrs 30 mins

Practice: The Definite Integral as Accumulated Change

The definite integral is more than just the area under the curve. In this Tutorial you'll look at the definite integral as an "accumulator."

Duration: 0 hrs 30 mins

Practice: Practice With the Definite Integral as Accumulated Change

Exercise your understanding about the definite integral as an accumulator of change and about the idea of average value of a function.

Duration: 1 hr Scoring: 25 points

LESSON 3: ANT IDERIVATIVES

Discuss: Going Between Position, Velocity, and Acceleration

Given an equation for velocity, attempt to come up with an equation for position. And given an equation for acceleration attempt to come up with an equation for velocity.

Duration: 0 hrs 30 mins Scoring: 10 points

Study: The Antiderivative

Study how, given a derivative, to find the "original" function.

Duration: 0 hrs 30 mins

Practice: The Antiderivative

Study how, given a derivative, to find the "original" function.

Duration: 0 hrs 30 mins

Quiz: Practice Finding Antiderivatives

Practice finding antiderivatives.

Duration: 1 hr Scoring: 11 points

Study: Antiderivatives of Composite Functions

Examine how to find antiderivatives of composite functions.

Duration: 0 hrs 30 mins

Practice: Antiderivatives of Composite Functions

Examine how to find antiderivatives of composite functions.

Duration: 0 hrs 30 mins

Quiz: Practice Finding Antiderivatives of Composite Functions

Practice finding antiderivatives of composite functions.

Duration: 1 hr Scoring: 11 points

Practice: Practice Finding Antiderivatives of Composite Functions

Apply your knowledge about finding antiderivatives of composite functions.

Duration: 1 hr

LESSON 4: THE FUNDAMENTAL THEOREMS OF CALCULUS

Practice: Exploring the Relationship Between the Derivative and the Antiderivative

In this activity, use your calculator to explore the relationship between the derivative and the antiderivative (or area function). See how the derivative and the antiderivative are related.

Duration: 0 hrs 30 mins Scoring: 20 points

Study: The Fundamental Theorems of Calculus

Notice how the Fundamental Theorems of Calculus tie together into one neat package. Examine the shortcut for evaluating definite integrals exactly.

Duration: 0 hrs 30 mins

Practice: The Fundamental Theorems of Calculus

Notice how the Fundamental Theorems of Calculus tie together into one neat package. Examine the shortcut for evaluating definite integrals exactly.

Duration: 0 hrs 30 mins

Quiz: Practice Using the Fundamental Theorems

Develop a basic understanding of what the theorems mean and how to use them.

Duration: 0 hrs 45 mins Scoring: 10 points

Study: Definite Integrals of Composite Functions

Apply the use of substitution to find antiderivatives to definite integrals and study about changing the limits of integration.

Duration: 0 hrs 30 mins

Practice: Definite Integrals of Composite Functions

Apply the use of substitution to find antiderivatives to definite integrals and study about changing the limits of integration.

Duration: 0 hrs 30 mins

Practice: Practice Using Substitution and the Fundamental Theorems

Practice using the method of substitution for evaluating definite integrals.

Duration: 1 hr

Quiz: Terms and Concepts

Examine the subtleties of terms and concepts related to the Fundamental Theorems and integration.

Duration: 0 hrs 30 mins Scoring: 10 points

Study: Analyzing Functions Defined as Definite Integrals

Look at some functions given as definite integrals, and explore how to do calculus with them.

Duration: 0 hrs 30 mins

Practice: Analyzing Functions Defined as Definite Integrals

Look at some functions given as definite integrals, and explore how to do calculus with them.

Duration: 0 hrs 30 mins

Practice: Practice Analyzing Functions Defined by Definite Integrals

Find derivatives at points, and apply multiple applications on functions given as definite integrals.

Duration: 1 hr Scoring: 30 points

LESSON 5: THE INTEGRAL AND THE FUNDAMENTAL THEOREM OF CALCULUS WRAP-UP

Review: The Integral and the Fundamental Theorem of Calculus

Review your studies of the area under a curve, definite integrals, antiderivatives, and the fundamental theorems of calculus

Duration: 5 hrs

Test (CS): The Integral and the Fundamental Theorem of Calculus

Take a 25-minute test covering the area under a curve, definite integrals, antiderivatives, and the fundamental theorems of calculus.

Duration: 0 hrs 25 mins Scoring: 20 points

Test (TS): The Integral and the Fundamental Theorem of Calculus

Take a 35-minute test covering the area under a curve, definite integrals, antiderivatives, and the fundamental theorems of calculus.

Duration: 0 hrs 35 mins Scoring: 30 points

UNIT 7: APPLICATIONS OF THE INTEGRAL

LESSON 1: AREA

Study: Area Between Curves

See how to use the definite integral to determine the area of just about any shape that can be defined with equations in terms of x and y.

Duration: 0 hrs 30 mins

Practice: Area Between Curves

See how to use the definite integral to determine the area of just about any shape that can be defined with equations in terms of x and y.

Duration: 0 hrs 30 mins

Quiz: Practice Finding Area Between Curves

Practice finding area between curves.

Duration: 0 hrs 45 mins Scoring: 8 points

Study: More About Areas

See what else you can do with finding areas. Find areas in cases where there is no formula for the function, and analyze functions in cases where you're given an integral but not the original formula for the function.

Duration: 0 hrs 30 mins

Practice: More About Areas

See what else you can do with finding areas. Find areas in cases where there is no formula for the function, and analyze functions in cases where you're given an integral but not the original formula for the function.

Duration: 0 hrs 30 mins

Quiz: Practice Finding Domains for Given Areas

Work with the idea of the average value of a function. Some of the techniques will be the same as in the previous activity, where you found areas between curves.

Duration: 1 hr Scoring: 10 points

Practice: More Practice with Areas

Practice applying definite integrals. Work with qualitative questions (not heavy on numbers and calculation).

Duration: 1 hr 15 mins Scoring: 25 points

LESSON 2: VOLUME

Discuss: Making a Solid

In this activity, construct a three-dimensional solid out of cardboard.

Duration: 1 hr Scoring: 10 points

Study: Volumes of Revolution

Examine three-dimensional shapes formed by rotating a curve and how to use the integral to find their volumes.

Duration: 0 hrs 30 mins

Practice: Volumes of Revolution

Examine three-dimensional shapes formed by rotating a curve and how to use the integral to find their volumes.

Duration: 0 hrs 30 mins

Practice: Practice Working With Volumes of Revolution

Find the volume of solids formed by rotating given regions around a certain line.

Duration: 1 hr

Study: Other Cross Sections

Investigate cross sections of solids.

Duration: 0 hrs 30 mins

Practice: Other Cross Sections

Investigate cross sections of solids.

Duration: 0 hrs 30 mins

Practice: Practice With Many Kinds of Volumes

Practice computing the volumes of solids whose cross sections are not circular or annular (washer-shaped).

Duration: 1 hr 30 mins Scoring: 25 points

LESSON 3: OTHER APPLICATIONS OF THE DEFINITE INTEGRAL

Practice: Rectilinear Motion

Apply your knowledge of position, distance, velocity, speed, and acceleration in preparation for applying the definite integral to rectilinear motion (motion in a straight line).

Duration: 0 hrs 30 mins

Study: Rectilinear Motion Revisited

Use integrals to find net and total distances. Look at the distinction between speed and velocity, and see how these relate to the distinction between net and total distance.

Duration: 0 hrs 30 mins

Practice: Rectilinear Motion Revisited

Use integrals to find net and total distances. Look at the distinction between speed and velocity, and see how these relate to the distinction between net and total distance.

Duration: 0 hrs 30 mins

Practice: Practice Finding Distances, Velocities, and Other Aspects of Rectilinear Motion

Answer questions about the relationships between distance, velocity, and other aspects of rectilinear motion.

Duration: 1 hr

Study: Other Applications of the Definite Integral

Learn how these applications work in situations such as calculating arc length, work (force over a distance), and fluid pressure. Study about the connections between these applications.

Duration: 0 hrs 30 mins

Practice: Other Applications of the Definite Integral

Learn how these applications work in situations such as calculating arc length, work (force over a distance), and fluid pressure. Study about the connections between these applications.

Duration: 0 hrs 30 mins

Quiz: Practice Using Definite Integrals

Practice applying the definite integral. Underlying all these applications is the principle of accumulation.

Duration: 1 hr 15 mins Scoring: 9 points

Practice: Practice Using Definite Integrals

Practice applying the definite integral to situations involving accumulation of quantities.

Duration: 1 hr 30 mins Scoring: 30 points

Quiz: Important Concepts From This Unit

Review the meanings of some of the important terms and concepts in a series of qualitative (no math calculations) questions.

Duration: 1 hr 30 mins Scoring: 8 points

LESSON 4: APPLICATIONS OF THE INTEGRAL WRAP-UP

Review: Applications of the Integral

Review concepts of area, volume, and other applications of the definite integral.

Duration: 5 hrs

Test (CS): Applications of the Integral

Take a 25-minute test covering various applications of the definite integral, including finding areas of regions and volume for solids and use the definite integral to solve problems of accumulation of change.

Duration: 0 hrs 25 mins Scoring: 20 points

Test (TS): Applications of the Integral

Take a 35-minute test covering various applications of the definite integral, including finding areas of regions and volume for solids and use the definite integral to solve problems of accumulation of change.

Duration: 0 hrs 35 mins Scoring: 30 points

UNIT 8: INVERSE AND TRANSCENDENTAL FUNCTIONS

LESSON 1: INVERSE FUNCTIONS

Study: Inverse Functions and Their Derivatives

Re-visit derivatives. Just as you may want to know how fast y changes with respect to x, you may want to know how fast x changes with respect to y.

Duration: 0 hrs 30 mins

Practice: Inverse Functions and Their Derivatives

Re-visit derivatives. Just as you may want to know how fast y changes with respect to x, you may want to know how fast x changes with respect to y.

Duration: 0 hrs 30 mins

Quiz: Derivatives of Inverse Functions

Practice finding derivatives of inverse functions.

Duration: 0 hrs 45 mins Scoring: 10 points

Study: Inverse Trigonometric Functions

Use implicit differentiation to find the derivatives of arctan(x) and arccos(y).

Duration: 0 hrs 30 mins

Practice: Inverse Trigonometric Functions

Use implicit differentiation to find the derivatives of arctan(x) and arccos(y).

Duration: 0 hrs 30 mins

Quiz: Use Inverse Trig Functions and Identify Their Domain Restrictions

Use inverse trigonometric functions, identify their domain restrictions, and find their derivatives.

Duration: 1 hr 30 mins Scoring: 16 points

Practice: Determine and Use Derivatives of Inverse Trig Functions

Determine and use derivatives of inverse trig functions.

Duration: 1 hr

LESSON 2: REVIEW OF LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Discuss: What Makes Logarithms So Scary?

Discuss what makes logarithms so scary.

Duration: 0 hrs 30 mins Scoring: 10 points

Practice: Derivatives of Exponential Functions

In this activity, find the derivatives of some specific exponential functions by numerical exploration with your calculator.

Study: Review of Exponential and Logarithmic Functions

Review some precalculus. It is important to understand the properties of these functions before working with

derivatives and integrals that involve them.

Duration: 0 hrs 30 mins

Practice: Review of Exponential and Logarithmic Functions

Review some precalculus. It is important to understand the properties of these functions before working with derivatives and integrals that involve them.

Duration: 0 hrs 30 mins

Quiz: Exponential and Logarithmic Functions

Practice with exponential and logarithmic functions.

Duration: 0 hrs 45 mins Scoring: 16 points

LESSON 3: COMPUTATION OF DERIVATIVES FOR SOME TRANSCENDENTAL FUNCTIONS

Practice: What Is the Area Under 1/x?

In this activity, use your calculator as a tool to find the exact area under the curve y = 1/x.

Duration: 0 hrs 45 mins

Study: Derivatives of Logarithmic and Exponential Functions

Learn how to take the derivatives of logs and exponentials, and learn a new technique for taking messy derivatives.

Duration: 0 hrs 30 mins

Practice: Derivatives of Logarithmic and Exponential Functions

Learn how to take the derivatives of logs and exponentials, and learn a new technique for taking messy derivatives.

Duration: 0 hrs 30 mins

Quiz: Derivatives of Logarithmic and Exponential Functions

Determine derivatives of logarithmic and exponential functions.

Duration: 0 hrs 45 mins Scoring: 15 points

Practice: Determine Derivatives of Logarithmic and Exponential Functions

Practice determining derivatives of logarithmic and exponential functions.

Duration: 1 hr

Study: Analysis of Curves Involving Transcendental Functions

Revisit some applications of derivatives.

Duration: 0 hrs 30 mins

Practice: Analysis of Curves Involving Transcendental Functions

Revisit some applications of derivatives.

Duration: 0 hrs 30 mins

Quiz: Practicing Curve Analysis

Work on problems involving related rates, rectilinear motion, optimization, and curve analysis. Use multiple functions to describe the relationships in the problems.

Duration: 1 hr Scoring: 8 points

Practice: Analysis of Curves

Practice applying differentiation to problems involving transcendental functions.

Duration: 1 hr Scoring: 25 points

Study: L'Hospital's Rule

See how to use L'Hospital's rule to find limits of quotients.

Duration: 0 hrs 30 mins Scoring: 0 points

Practice: L'Hospital's Rule

Practice using L'Hospital's rule to find limits of quotients.

Duration: 0 hrs 30 mins Scoring: 0 points

LESSON 4: INTEGRALS OF SOME TRANSCENDENTAL FUNCTIONS

Study: Integrating Transcendental Functions

Review the antiderivative rules for transcendental functions, and start using them to work with integrals.

Duration: 0 hrs 30 mins

Practice: Integrating Transcendental Functions

Review the antiderivative rules for transcendental functions, and start using them to work with integrals.

Duration: 0 hrs 30 mins

Quiz: Antiderivatives of Transcendental Functions

Practice finding antiderivatives involving transcendental functions.

Duration: 0 hrs 45 mins Scoring: 11 points

Practice: More Definite and Indefinite Integrals

Practice finding antiderivatives and definite integrals for the many types of functions covered in this course.

Duration: 1 hr

Study: Applications of Integrals Using Transcendental Functions

Examine why the applications for the definite integral are valid.

Duration: 0 hrs 30 mins

Practice: Applications of Integrals Using Transcendental Functions

Examine why the applications for the definite integral are valid.

Duration: 0 hrs 30 mins

Practice: More Applications of Integrals

Find and use integrals for situations that include transcendental functions.

Duration: 1 hr Scoring: 25 points

LESSON 5: INVERSE AND TRANSCENDENTAL FUNCTIONS WRAP-UP

Review: Inverse and Transcendental Functions

Review concepts of logarithmic, exponential, inverse and transcendental functions, and computation of some transcendental functions.

Duration: 5 hrs

Test (CS): Inverse and Transcendental Functions

Take a 25-minute test covering inverse and transcendental functions, including inverse trigonometric, exponential, and logarithmic functions, their derivatives and antiderivatives, and applications involving transcendental functions.

Duration: 0 hrs 25 mins Scoring: 20 points

Test (TS): Inverse and Transcendental Functions

Take a 35-minute test covering inverse and transcendental functions, including inverse trigonometric, exponential, and logarithmic functions, their derivatives and antiderivatives, and applications involving transcendental functions.

Duration: 0 hrs 35 mins Scoring: 30 points

UNIT 9: SEPARABLE DIFFERENTIAL EQUATIONS AND SLOPE FIELDS

LESSON 1: SEPARABLE DIFFERENTIAL EQUATIONS

Study: Differential Equations and Slope Fields

See how to graph a differential equation by visualizing a whole family of functions at once, using a slope field.

Duration: 0 hrs 30 mins

Practice: Differential Equations and Slope Fields

See how to graph a differential equation by visualizing a whole family of functions at once, using a slope field.

Duration: 0 hrs 30 mins

Quiz: Important Concepts From This Unit

Answer questions about differential equations, using a slope field, and prepare for a more in-depth treatment of differential equations.

Duration: 1 hr Scoring: 9 points

Study: Separable Differential Equations Used in Modeling

Study how to recognize a differential equation and how to solve some really simple differential equations used in modeling "real life" situations.

Duration: 0 hrs 30 mins

Practice: Separable Differential Equations Used in Modeling

Study how to recognize a differential equation and how to solve some really simple differential equations used in modeling "real life" situations.

Duration: 1 hr 45 mins

Quiz: Setting up and Solving Separable Differential Equations

Look at some of the steps involved in setting up and solving these equations.

Duration: 1 hr Scoring: 11 points

Practice: Applications of Differential Equations

Practice modeling situations as differential equations, and solve those equations.

Duration: 1 hr 45 mins Scoring: 30 points

LESSON 2: EXPONENTIAL GROWTH AND DECAY AND RELATED APPLICATIONS

Study: Exponential Growth and Decay

Look closely at dy/dt = ky, one of the most important differential equations used in modeling where the rate of change depends upon the amount.

Duration: 0 hrs 30 mins

Practice: Exponential Growth and Decay

Look closely at dy/dt = ky, one of the most important differential equations used in modeling where the rate of change depends upon the amount.

Duration: 0 hrs 30 mins

Quiz: Solving Growth and Decay Problems

Practice recognizing and solving differential equations that lead to exponential growth and decay.

Duration: 1 hr Scoring: 10 points

Study: More Applications of Differential Equations

Look at Newton's law of cooling, mixing problems, falling bodies with air resistance, and logistic growth curves.

Duration: 0 hrs 30 mins

Practice: More Applications of Differential Equations

Look at Newton's law of cooling, mixing problems, falling bodies with air resistance, and logistic growth curves.

Duration: 0 hrs 30 mins

Practice: More Applications of Exponential and Logarithmic Differential Equations

Practice using applications of exponential and logarithmic differential equations.

Duration: 1 hr 15 mins Scoring: 30 points

LESSON 3: SEPARABLE DIFFERENTIAL EQUATIONS AND SLOPE FIELDS WRAP-UP

Review: Separable Differential Equations

Review the concepts of separable differential equations and exponential growth and decay.

Duration: 5 hrs

Test (CS): Separable Differential Equations and Slope Fields

Take a 25-minute test covering real-world problems with differential equations, differential equations leading to exponential growth and decay and solve separable differential equations.

Duration: 0 hrs 25 mins Scoring: 20 points

Test (TS): Separable Differential Equations and Slope Fields

Take a 35-minute test covering real-world problems with differential equations, differential equations leading to exponential growth and decay and solve separable differential equations.

Duration: 0 hrs 35 mins Scoring: 30 points

UNIT 10: AP EXAM REVIEW AND FINAL EXAM

LESSON 1: CALCULUS AS A COHESIVE WHOLE

Study: Strategies for Taking the AP Exam

What to do between now and the Exam, and how to handle yourself during the Exam. Study how AP Exam scores are calculated, and explore some additional strategies for answering Free-response questions.

Duration: 0 hrs 30 mins

Practice: Strategies for Taking the AP Exam

What to do between now and the Exam, and how to handle yourself during the Exam. Study how AP Exam scores are calculated, and explore some additional strategies for answering Free-response questions.

Duration: 0 hrs 30 mins

Practice: Calculus as a Cohesive Whole

Using the Fundamental Theorems of Calculus as a focus, complete a "Concept Map" and take notice of what's helped you see calculus as a cohesive whole.

Duration: 0 hrs 30 mins

Discuss: Calculus as a Cohesive Whole

Write a short question in which the solution requires the test taker to tie concepts from different parts of the Calculus AB course. Also answer a question that has been provided.

Duration: 0 hrs 30 mins Scoring: 10 points

Practice: Goals for the AP Exam

Review the nine goals stated by the College Board for AP Calculus, using the goals as a framework for reviewing the course and reviewing for the Final Exam and for the AP Exam.

Duration: 0 hrs 40 mins Scoring: 27 points

LESSON 2: REVIEW OF TOPICS

Quiz: AP-Style Multiple-Choice Questions, Part 1

Following an outline of the course, answer questions that review and combine concepts tested on the AP Exam. Duration: 2 hrs Scoring: 18 points

Quiz: AP-Style Multiple-Choice Questions, Part 2

Following an outline of the course, answer questions that review and combine concepts tested on the AP Exam.

Duration: 2 hrs Scoring: 22 points

Practice: AP-Style Free-Response Questions

Answer AP-style Free-Response Questions.

Duration: 6 hrs Scoring: 30 points

LESSON 3: PRACTICE FINAL EXAMS

Practice: Full Final Practice Exam

Time yourself as you practice for the Final Exam and the AP Exam by taking this ungraded test.

Duration: 3 hrs 20 mins

Study: AP Free-Response Questions

Learn general strategies for answering AP free-response questions by learning to score the practice test that you did in the previous activity.

Duration: 0 hrs 30 mins

Practice: AP Free-Response Questions

Learn general strategies for answering AP free-response questions by learning to score the practice test that you did in the previous activity.

Duration: 0 hrs 30 mins

Practice: Scoring Your Practice Exam

Review calculus problem-solving techniques and review AP Exam-taking strategies by applying the AP scoring techniques.

Duration: 2 hrs Scoring: 30 points

Practice: Self-Scored Practice Exam

 $\hbox{Grade yourself on how well you did the scoring work, as well as how you did on the practice exam. }$

Duration: 4 hrs

Discuss: Should You Take the AP Exam?

With your teacher and with other students in your class, discuss the pros and cons of taking the AP Exam. Duration: 0 hrs 30 mins Scoring: 10 points

LESSON 4: FINAL EXAM

Exam: Final Exam

Take a simulation of an AP Exam. Duration: 1 hr 40 mins Scoring: 45 points

Final Exam: Final Exam

Take a simulation of an AP Exam.

Duration: 1 hr 30 mins Scoring: 55 points